
Neural networks for imbalanced classification:
proposed AUM loss with mlr3torch in R

Toby Dylan Hocking
Professeur Agrégé, 2024–present,

Département d’Informatique
Université de Sherbrooke

toby.dylan.hocking@usherbrooke.ca
toby.hocking@r-project.org

April 8, 2025

Unbalanced classification, AUC, and proposed AUM

Basics of neural networks with torch in R

Implementing proposed AUM loss in mlr3torch framework

Conclusion

Learning two different functions using two data sets
Figure from chapter by Hocking TD, Introduction to machine
learning and neural networks for book Land Carbon Cycle
Modeling: Matrix Approach, Data Assimilation, and Ecological
Forecasting edited by Luo Y (Taylor and Francis, 2022).

g() = 0
g() = 1
g() = 1

h() = 0
h() = 0
h() = 1

Learn() g

Learn() h

Train
data

Learned
function

Learning
Algorithm

Predictions
on test data

▶ Ten classes are equally distributed in these data (10% of each,
balanced labels).

▶ What happens if there are 91% of one class, and 1% of each
of the other 9 classes? (unbalanced labels)

How to deal with class imbalance?

▶ In binary classification, standard learning algorithms can yield
sub-optimal prediction accuracy if train data have imbalanced
labels.

▶ Predicting childhood autism (Lindly et al.), 3% autism, 97%
not.

▶ Predicting presence of trees/burn in satellite imagery (Shenkin
et al., Thibault et al.), small percent of trees in deserts of
Arizona, small percent of burned area out of total forested
area in Quebec.

▶ Predicting fish spawning habitat in sonar imagery (Bodine et
al.), small percent of suitable spawning habitat, out of total
river bed.

▶ How do we adapt our learning algorithm, to handle the class
imbalance? Re-weighting loss? Over/under-sampling?

▶ New AUM loss for optimizing ROC curve.

ROC curves: fair comparison with different default FPR

ROC=
Receiver
Operating
Characteristic
curves show FPR,
TPR for all cut
points of the pre-
dicted probability.

▶ Imbalanced labels: 18% positive, 82% negative.

▶ At defaults (D), glmnet has fewer errors (misleading).

▶ At FPR=4%, xgboost has fewer errors (fair comparison).

Comparing AUM with weighted logistic loss

Hillman and Hocking, Journal of Machine Learning Research 2023.

▶ Two image classification data sets.
▶ LeNet5 convolutional neural network, batch size 1000.
▶ Step size from 10−4 to 102 (keep best).
▶ AUM rate uses Area Under Min of FPR/FNR, more accurate

in these data than AUM count (FP/FN totals), .
▶ logistic unweighted is usual binary cross-entropy loss (uniform

weight=1 for each sample).
▶ for logistic weighted, we compute class frequencies,

n1 =
∑N

i=1 I [yi = 1] and n0 similar; then weights are
wi = 1/nyi so that total weight of positive class equals total
weight of negative class.

Unbalanced classification, AUC, and proposed AUM

Basics of neural networks with torch in R

Implementing proposed AUM loss in mlr3torch framework

Conclusion

Advantages of torch

library(torch) in R provides two key features:

▶ Automatic gradient computation (auto-grad), which makes it
easy to implement neural network learning, after having
defined the network structure and loss function.

▶ Easy speedups using GPUs (if your model and data can fit
into GPU memory).

R package has same features as python version of torch, but with
less documentation and example code.

Representation of digits in CSV

▶ Each image/observation is one row.

▶ First column is output/label/class to predict.

▶ Other 256 columns are inputs/features (pixel intensity values).

Data from
https://web.stanford.edu/~hastie/ElemStatLearn/datasets/zip.train.gz

1: 6 -1 -1 ... -1.000 -1.000 -1

2: 5 -1 -1 ... -0.671 -0.828 -1

3: 4 -1 -1 ... -1.000 -1.000 -1

4: 7 -1 -1 ... -1.000 -1.000 -1

5: 3 -1 -1 ... -0.883 -1.000 -1

6: 6 -1 -1 ... -1.000 -1.000 -1

...

Demo: reading CSV, plotting digits,
https://github.com/tdhock/2023-res-baz-az/blob/main/

2023-04-19-deep-learning.Rmd

https://web.stanford.edu/~hastie/ElemStatLearn/datasets/zip.train.gz
https://github.com/tdhock/2023-res-baz-az/blob/main/2023-04-19-deep-learning.Rmd
https://github.com/tdhock/2023-res-baz-az/blob/main/2023-04-19-deep-learning.Rmd

Converting R data to torch tensors

Use array function with all columns except first as data.

zip.dt <- data.table::fread("zip.train.gz")

zip.X.array <- array(

data = unlist(zip.dt[,-1]),

dim = c(nrow(zip.dt), 1, 16, 16))

zip.X.tensor <- torch::torch_tensor(zip.X.array)

zip.y.tensor <- torch::torch_tensor(

zip.dt$V1+1L, torch::torch_long())

Need to specify dimensions of input/X array:

▶ Observations: same as the number of rows in the CSV table.

▶ Channels: 1 (greyscale image, would be 3 for RGB image).

▶ Pixels wide: 16.

▶ Pixels high: 16.

For output/y need to add 1 in R, and specify long int type.

Network diagram for linear model with 10 inputs/features

Neural network diagrams show how each unit (node) is computed
by applying the weights (edges) to the values of the units at the
previous layer.

Linear model R code

n.features <- 16*16

n.classes <- 10

linear.model <- torch::nn_sequential(

torch::nn_flatten(),

torch::nn_linear(n.features, n.classes))

pred.tensor <- linear.model(zip.X.tensor)

▶ First layer must specify shape of inputs (here 16x16x1).

▶ nn flatten converts any shape to a single dimension of units
(here, convert each image from 1x16x16-array to 256-vector).

▶ nn linear uses all units/features in the previous layer (256)
to predict each unit in the next layer (10).

▶ There are ten possible classes for an output.

Computing loss, gradient, parameter updates

loss.fun <- torch::nn_cross_entropy_loss()

loss.tensor <- loss.fun(pred.tensor, zip.y.tensor)

step.size <- 0.1#also known as learning rate.

optimizer <- torch::optim_sgd(

linear.model$parameters, lr=step.size)

optimizer$zero_grad()

loss.tensor$backward()

optimizer$step()

▶ loss.fun is the cross-entropy loss for multi-class
classification, which is directly optimized/minimized in each
iteration of the gradient descent learning algorithm.

▶ optimizer is the version of the gradient descent learning
algorithm to use.

▶ backward method computes gradients.

▶ step method updates model parameters based on gradients.

Gradient Descent learning algorithm

gradient_descent <-

function(index.list, model, n_epochs, gradient.set){

loss.dt.list <- list()

for(epoch in seq(1, n_epochs)){

take_steps(index.list[[gradient.set]], model)

epoch.loss.dt <- loss_each_set(index.list, model)

loss.dt.list[[paste(epoch)]] <-

data.table(epoch, epoch.loss.dt)

}

rbindlist(loss.dt.list)

}

▶ take_steps sub-routine updates model parameters.

▶ loss_each_set computes loss and error rate on gradient set
and held-out set.

Demo: splitting data, gradient descent loop.

Network diagram for one hidden layer

Neural network diagrams show how each unit (node) is computed
by applying the weights (edges) to the values of the units at the
previous layer.

Dense (fully connected) neural network R code

n.hidden.units <- 50

one.hidden.layer <- torch::nn_sequential(

torch::nn_flatten(),

torch::nn_linear(n.features, n.hidden.units),

torch::nn_relu(),

torch::nn_linear(n.hidden.units, n.classes))

Network diagram for multiple hidden layers

Neural network diagrams show how each unit (node) is computed
by applying the weights (edges) to the values of the units at the
previous layer.

Use for loop to implement multiple hidden layers

new_fully_connected_units <- function(units.per.layer){

seq.args <- list(torch::nn_flatten())

for(output.i in seq(2, length(units.per.layer))){

input.i <- output.i-1

seq.args[[length(seq.args)+1]] <- torch::nn_linear(

units.per.layer[[input.i]],

units.per.layer[[output.i]])

if(output.i<length(units.per.layer)){

seq.args[[length(seq.args)+1]] <- torch::nn_relu()

}

}

do.call(torch::nn_sequential, seq.args)

}

▶ input a vector of units per layer, for example
c(256,1000,100,10).

▶ Begin with flatten.
▶ Linear followed by relu in each layer except last.

2D convolutional kernel for 6x6 pixel image, kernel size=2

torch::nn_conv2d(

in_channels = 1, out_channels = 2, kernel_size = 2)

2D convolutional kernel for 6x6 pixel image, kernel size=3

torch::nn_conv2d(

in_channels = 1, out_channels = 2, kernel_size = 3)

Convolutional model R code

seq2flat <- torch::nn_sequential(

torch::nn_conv2d(

in_channels = 1, out_channels = 2, kernel_size = 3),

torch::nn_relu(),

torch::nn_flatten(),

torch::nn_linear(conv.hidden.units, last.hidden.units),

torch::nn_relu(),

torch::nn_linear(last.hidden.units, n.classes))

▶ Two hidden layers: one convolutional, one linear.

▶ Sparse: few inputs are used to predict each unit in nn conv2d.

▶ Exploits structure of image data to make learning
easier/faster.

Two kinds of cross-validation must be used

Source: https://mlr.mlr-org.com/articles/tutorial/
nested_resampling.html

https://mlr.mlr-org.com/articles/tutorial/nested_resampling.html
https://mlr.mlr-org.com/articles/tutorial/nested_resampling.html

Accuracy rates for each test fold

▶ Always a good idea to compare with the trivial/featureless
baseline model which always predicts the most frequent class
in the train set. (ignoring all inputs/features)

▶ Here we see that the featureless baseline is much less accurate
than the three learned models, which are clearly learning
something non-trivial.

▶ Code for test accuracy figures:
https://github.com/tdhock/2023-res-baz-az/blob/

main/figure-test-accuracy.R

https://github.com/tdhock/2023-res-baz-az/blob/main/figure-test-accuracy.R
https://github.com/tdhock/2023-res-baz-az/blob/main/figure-test-accuracy.R

Zoom to learned models

▶ Dense neural network slightly more accurate than linear
model, convolutional significantly more accurate than others.

▶ Conclusion: convolutional neural network should be preferred
for most accurate predictions in these data.

▶ Maybe not the same conclusion in other data sets, with the
same models. (always need to do cross-validation experiments
to see which model is best in any given data set)

▶ Maybe other models/algorithms would be even more accurate
in these data. (more/less layers, more/less units, completely
different algorithm such as random forests, boosting, etc)

Unbalanced classification, AUC, and proposed AUM

Basics of neural networks with torch in R

Implementing proposed AUM loss in mlr3torch framework

Conclusion

Computing loss and gradient descent updates in torch

loss.fun <- torch::nn_cross_entropy_loss() #multi-class.

loss.fun <- torch::nn_bce_with_logits_loss() #binary.

loss.fun <- Proposed_AUM #ROC optimization.

Then the rest of the code is the same:

loss.tensor <- loss.fun(pred.tensor, zip.y.tensor)

step.size <- 0.1#also known as learning rate.

optimizer <- torch::optim_sgd(

linear.model$parameters, lr=step.size)

optimizer$zero_grad()

loss.tensor$backward()

optimizer$step()

ROC curve R torch code uses argsort

ROC_curve <- function(pred_tensor, label_tensor){

sorted_indices = torch_argsort(-pred_tensor$flatten())

... # $cumsum() $diff() etc.

list(FPR=FPR, FNR=FNR, TPR=1 - FNR,

"min(FPR,FNR)"=torch_minimum(FPR, FNR),

min_constant=torch_cat(c(torch_tensor(-Inf), uniq_thresh)),

max_constant=torch_cat(c(uniq_thresh, torch_tensor(Inf))))

}

> L <- ROC_curve(torch_tensor(c(2,-3.5,-1,1.5)),

+ torch_tensor(c(0, 0, 1, 1)))

> data.frame(lapply(L, torch::as_array), check.names=FALSE)

FPR FNR TPR min.FPR.FNR. min_constant max_constant

1 0.0 1.0 0.0 0.0 -Inf -2.0

2 0.5 1.0 0.0 0.5 -2.0 -1.5

3 0.5 0.5 0.5 0.5 -1.5 1.0

4 0.5 0.0 1.0 0.0 1.0 3.5

5 1.0 0.0 1.0 0.0 3.5 Inf

https://tdhock.github.io/blog/2024/auto-grad-overhead/

https://tdhock.github.io/blog/2024/auto-grad-overhead/

R code for AUC and proposed AUM both use ROC curve

ROC_AUC <- function(pred_tensor, label_tensor){

roc = ROC_curve(pred_tensor, label_tensor)

FPR_diff = roc$FPR[2:N]-roc$FPR[1:-2]

TPR_sum = roc$TPR[2:N]+roc$TPR[1:-2]

torch_sum(FPR_diff*TPR_sum/2.0)

}

Proposed_AUM <- function(pred_tensor, label_tensor){

roc = ROC_curve(pred_tensor, label_tensor)

min_FPR_FNR = roc[["min(FPR,FNR)"]][2:-2]

constant_diff = roc$min_constant[2:N]$diff()

torch_sum(min_FPR_FNR * constant_diff)

}

Can be used for ROC optimization in binary classification, instead
of torch::nn_bce_with_logits_loss!
https://tdhock.github.io/blog/2024/auto-grad-overhead/

https://tdhock.github.io/blog/2024/auto-grad-overhead/

Advantages of mlr3 framework

▶ Provides standard interface to many popular learning
algorithms in other R packages. (rpart, glmnet, torch, ...)

▶ Reference implementations of standard algorithms like
cross-validation.

▶ Makes it easy to code benchmarks (no for loop necessary) to
compare prediction accuracy of different algorithms, on
different data sets, ...

▶ Easy parallelization of benchmarks on super-computer
clusters. (100–1000x speedups)

Creating unbalanced MNIST data to demonstrate learning
with AUM loss

▶ MNIST data sets are images with ten classes (0–9).

▶ Convert to binary problem: even versus odd.

▶ Two subsets: balanced (50% odd, 50% even), unbalanced
(99% odd, 1% even).

▶ Can AUM loss be used for learning in unbalanced data?

subset target_prop 0 1 2 3

1: balanced 0.01 3568 3939 3613 3570

2: unbalanced 0.01 36 3938 37 3571

4 5 6 7 8 9

1: 3528 3157 3554 3646 3528 3479

2: 35 3156 36 3647 35 3479

https://tdhock.github.io/blog/2025/unbalanced/

https://tdhock.github.io/blog/2025/unbalanced/

Data set is Task in mlr3

Define subset column so that we will train on unbalanced,
predict/test on balanced.

task_MNIST <- mlr3::TaskClassif$new(

"MNIST", task_data_table, target="binary_label")

task_MNISTcol_rolesstratum <- "original_y"

task_MNISTcol_rolessubset <- "balanced_or_not"

task_MNISTcol_rolesfeature <- as.character(0:783)

https://tdhock.github.io/blog/2024/mlr3torch/

https://tdhock.github.io/blog/2024/mlr3torch/

Define AUM loss module sub-class

AUM_loss_module <- torch::nn_module(

"nn_AUM_loss",

inherit = torch::nn_mse_loss,

initialize = function() {

super$initialize()

},

forward = Proposed_AUM

)

https://tdhock.github.io/blog/2024/mlr3torch/

https://tdhock.github.io/blog/2024/mlr3torch/

Defining a linear model in mlr3torch

Number of epochs fixed at 400.

pipe_op_list <- list(

mlr3torch::PipeOpTorchIngressNumeric$new(),

mlr3torch::nn("linear", out_features=1),

mlr3pipelines::po("torch_loss", AUM_loss_module),

mlr3pipelines::po(

"torch_optimizer",

mlr3torch::t_opt("sgd", lr=0.1)),

mlr3pipelines::po(

"torch_model_classif",

batch_size = 100000,

predict_type="prob",

n.epochs=400))

https://tdhock.github.io/blog/2024/mlr3torch/

https://tdhock.github.io/blog/2024/mlr3torch/

Computing subtrain/validation AUC at each epoch

measure_list = mlr3::msrs(c("classif.auc", "classif.acc"))

pipe_op_list = list(...

mlr3pipelines::po("torch_callbacks",

mlr3torch::t_clbk("history")),

mlr3pipelines::po(

"torch_model_classif",

batch_size = 100000, patience=400,

predict_type="prob",

measures_train=measure_list,

measures_valid=measure_list,

n.epochs=paradox::to_tune(

upper = 400, internal = TRUE)))

graph_obj = Reduce(

mlr3pipelines::concat_graphs, pipe_op_list)

learner_obj = mlr3::as_learner(graph_obj)

mlr3::set_validate(learner_obj, validate = 0.5)

https://tdhock.github.io/blog/2024/mlr3torch/

https://tdhock.github.io/blog/2024/mlr3torch/

Auto-tuner learns best number of epochs

pipe_op_list = list(...

mlr3pipelines::po(

"torch_model_classif",

measures_valid=measure_list,

n.epochs=paradox::to_tune(

upper = 400, internal = TRUE))

...

learner_auto = mlr3tuning::auto_tuner(

learner = learner_obj,

tuner = mlr3tuning::tnr("internal"),

resampling = mlr3::rsmp("insample"),

measure = mlr3::msr("internal_valid_score"),

term_evals = 1,

store_models = TRUE)

https://tdhock.github.io/blog/2024/mlr3torch/

https://tdhock.github.io/blog/2024/mlr3torch/

Create a learner list and benchmark grid

Grid combines a set of learners, tasks, and cross-validation splits.

learner_list <- list(

mlr3learners::LearnerClassifCVGlmnet$new(),

mlr3::LearnerClassifFeatureless$new(),

learner_auto)

SOAK <- mlr3resampling::ResamplingSameOtherSizesCV$new()

(bench.grid <- mlr3::benchmark_grid(

list(task_MNIST),

learner_list,

SOAK))

SOAK (Same/Other/All K-fold cross-validation for estimating
similarity of patterns in data subsets,
https://arxiv.org/abs/2410.08643) implements training on
one subset (unbalanced) and test on another (balanced).

https://arxiv.org/abs/2410.08643

Run benchmark on your local computer

Uses all available CPUs on your computer: each combination of
learner, task, and cross-validation split is run in parallel.

if(require(future))plan("multisession")

bench.result <- mlr3::benchmark(

bench.grid, store_models = TRUE)

https://tdhock.github.io/blog/2024/mlr3torch/

https://tdhock.github.io/blog/2024/mlr3torch/

Run benchmark on super-computer cluster

I typically use SLURM, which requires definition of how much
time/memory to reserve per learner/task/split.

batchtools::makeExperimentRegistry(

file.dir = "registry_folder", seed = 1,

packages = "mlr3verse")

mlr3batchmark::batchmark(

bench.grid, store_models = TRUE)

job.table <- batchtools::getJobTable()

chunks <- data.frame(job.table, chunk=1)

batchtools::submitJobs(chunks, resources=list(

walltime = 60*60*24,#seconds

memory = 8000,#megabytes per cpu

chunks.as.arrayjobs=TRUE))

https://tdhock.github.io/blog/2024/mlr3torch/

https://tdhock.github.io/blog/2024/mlr3torch/

Get results from super-computer cluster

jobs.after <- batchtools::getJobTable(reg=reg)

ids <- jobs.after[is.na(error), job.id]

keep_history <- function(x){

learners <- x$learner_state$model$marshaled[[

"tuning_instance"]]$archive$learners

x$learner_state$model <- if(is.function(learners)){

L <- learners(1)[[1]]

x$history <- L$model$torch_model_classif[[

"model"]]$callbacks$history

}

x

}

bench.result <- mlr3batchmark::reduceResultsBatchmark(

ids, fun=keep_history)

https://tdhock.github.io/blog/2024/mlr3torch/

https://tdhock.github.io/blog/2024/mlr3torch/

Cache results to RData and CSV files

bench.result <- mlr3batchmark::reduceResultsBatchmark(...)

save(bench.result, file="registry_folder.RData")

score_dt <- mlr3resampling::score(

bench.result, mlr3::msr("classif.auc"))

score_out <- score_dt[, .(

task_id, test.subset, train.subsets, test.fold,

algorithm, classif.auc)]

fwrite(score_out, "registry_folder.csv")

history_dt <- score_dt[, learner[[1]]$model, by=.(

task_id, test.subset, train.subsets, test.fold,

algorithm)]

fwrite(history_dt, "registry_folder_history.csv")

https://tdhock.github.io/blog/2024/mlr3torch/

https://tdhock.github.io/blog/2024/mlr3torch/

Test AUC of linear models

▶ Little difference for balanced training.

▶ AUM loss has larger test AUC using unbalanced training.

Subtrain/validation AUC of linear models

AUM loss reaches max validation AUC much faster than logistic.

Unbalanced classification, AUC, and proposed AUM

Basics of neural networks with torch in R

Implementing proposed AUM loss in mlr3torch framework

Conclusion

Thanks for participating!

▶ Contact: toby.dylan.hocking@usherbrooke.ca,
toby.hocking@r-project.org

▶ ROC curves and AUC are used to fairly evaluate binary
classification algorithms.

▶ Minimizing proposed AUM loss results in ROC optimization.

▶ Proposed AUM loss can be implemented in torch in R.

▶ Advantages of mlr3 framework include parallelization,
simplified code (fewer nested loops).

See my blog for reproducible R code examples:

▶ https://tdhock.github.io/blog/2024/auto-grad-overhead/

▶ https://tdhock.github.io/blog/2024/mlr3torch/

▶ https://tdhock.github.io/blog/2025/unbalanced/

https://tdhock.github.io/blog/2024/auto-grad-overhead/
https://tdhock.github.io/blog/2024/mlr3torch/
https://tdhock.github.io/blog/2025/unbalanced/

K-fold cross-validation for model evaluation

Is convolutional more accurate on unseen test data?

Inputs
Features

Outputs
Labels

Tr
a
in

 s
e
t2

1
1
3
2
3
1
3
3
2
1
2

All data Split 1
2
2
2
2
3
3
3
3

1
1
1
1

Fold
IDs

Te
st

 s
e
t

Learning
Algorithm

f1
Predict labels

on test set

Compute
accuracy

with respect
to held out
test labels

Tr
a
in

 s
e
t

Split 2
1
1
1
1
3
3
3
3

2
2
2
2Te

st
 s

e
t

Learning
Algorithm

f2
Predict labels

on test set

Compute
accuracy

with respect
to held out
test labels

Tr
a
in

 s
e
t

Split 3
1
1
1
1
2
2
2
2

3
3
3
3Te

st
 s

e
t

Learning
Algorithm

f3
Predict labels

on test set

Compute
accuracy

with respect
to held out
test labelsA1 A2 A3

1

N

1 D

O
b
se

rv
a
ti

o
n
s

▶ Randomly assign a fold ID from 1 to K to each observation.

▶ Hold out the observations with the Split ID as test set.

▶ Use the other observations as the train set.

▶ Run learning algorithm on train set (including hyper-parmeter
selection), outputs learned function (f1-f3).

▶ Finally compute and plot the prediction accuracy (A1-A3)
with respect to the held-out test set.

	Unbalanced classification, AUC, and proposed AUM
	Basics of neural networks with torch in R
	Implementing proposed AUM loss in mlr3torch framework
	Conclusion

